Tameness in the real field

Athipat Thamrongthanyalak

Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University

September 20, 2017
A structure S on the real field is a sequence of boolean algebras S_n of subsets of \mathbb{R}^n, for each $n = 1, 2, \ldots$, such that

1. $\Delta_{ij} := \{x \in \mathbb{R}^n : x_i = x_j\} \in S_n$ for $1 \leq i < j \leq n$
2. $A \in S_n \Rightarrow A \times \mathbb{R}, \mathbb{R} \times A \in S_{n+1}$
3. $A \in S_{n+1} \Rightarrow \pi(A) \in S_n$ where $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection map $(x_1, \ldots, x_{n+1}) \mapsto (x_1, \ldots, x_n)$
4. $\{(x, y) \in \mathbb{R}^2 : x < y\} \in S_2$
5. S_n contains all real algebraic subsets of \mathbb{R}^n.

Let $X \subseteq \mathbb{R}^n$. We say that X is **definable in** S if $X \in S_n$.
A **semialgebraic set** is a subset of \mathbb{R}^n that is a finite boolean combination of sets of the form \(\{ x \in \mathbb{R}^n : f(x) = 0 \} \) and \(\{ x \in \mathbb{R}^n : g(x) > 0 \} \) where f and g are polynomials over the reals in x_1, \ldots, x_n.

The collection of semialgebraic sets forms the smallest structure on the real field.

For $E \subseteq \mathbb{R}^n$, let $(\mathbb{R}; +, \cdot, E)$ denote the smallest structure that contains E.

Athipat Thamrongthanyalak
Tameness in the real field
A semialgebraic set is a subset of \mathbb{R}^n that is a finite boolean combination of sets of the form $\{x \in \mathbb{R}^n : f(x) = 0\}$ and $\{x \in \mathbb{R}^n : g(x) > 0\}$ where f and g are polynomials over the reals in x_1, \ldots, x_n.

The collection of semialgebraic sets forms the smallest structure on the real field.

For $E \subseteq \mathbb{R}^n$, let $(\mathbb{R}; +, \cdot, E)$ denote the smallest structure that contains E.
Examples

1. \((\mathbb{R}; +, \cdot, \mathbb{Z})\) NOT tame. “wild”

2. \((\mathbb{R}; +, \cdot)\) and \((\mathbb{R}; +, \cdot, \exp)\) tame \(\Rightarrow\) o-minimal.

A structure is **o-minimal** if every unary definable set is a finite union of points and open intervals.

\(\Rightarrow\) Tame topology (Grothendieck)
Examples

1. \((\mathbb{R}; +, \cdot, \mathbb{Z})\) NOT tame. “wild”
2. \((\mathbb{R}; +, \cdot)\) and \((\mathbb{R}; +, \cdot, \exp)\) tame \(\Rightarrow\) o-minimal.

A structure is o-minimal if every unary definable set is a finite union of points and open intervals.

\(\Rightarrow\) Tame topology (Grothendieck)
Examples

1. \((\mathbb{R}; +, \cdot, \mathbb{Z})\) NOT tame. “wild”
2. \((\mathbb{R}; +, \cdot)\) and \((\mathbb{R}; +, \cdot, \exp)\) tame \(\Rightarrow\) o-minimal.

A structure is **o-minimal** if every unary definable set is a finite union of points and open intervals.

\(\Rightarrow\) Tame topology (Grothendieck)
Suppose S is an o-minimal structure.

Cell Decomposition Theorem (van den Dries, Pillay-Steinhorn, 1990s)

1. If $f : X \to \mathbb{R}$ ($X \subseteq \mathbb{R}^n$) is a definable function, then there is a finite partition of X so that $f \upharpoonright C$ is continuous for every C in the partition.

2. Every definable sets has finitely many connected components.

Definable Choice (van den Dries, 1990s)

Let $\{S_x\}_{x \in X}$ be a definable family of subsets of \mathbb{R}^n. Then there exists a definable function $f : X \to \mathbb{R}^n$ such that $f(x) \in S_x$ for all $x \in X$.
Suppose S is an o-minimal structure.

Cell Decomposition Theorem (van den Dries, Pillay-Steinhorn, 1990s)

1. If $f : X \to \mathbb{R} (X \subseteq \mathbb{R}^n)$ is a definable function, then there is a finite partition of X so that $f \upharpoonright C$ is continuous for every C in the partition.
2. Every definable sets has finitely many connected components.

Definable Choice (van den Dries, 1990s)

Let $\{S_x\}_{x \in X}$ be a definable family of subsets of \mathbb{R}^n. Then there exists a definable function $f : X \to \mathbb{R}^n$ such that $f(x) \in S_x$ for all $x \in X$.
Recall

1. $(\mathbb{R}; +, \cdot, E)$ defines $\mathbb{Z} \Rightarrow$ WILD.
2. $(\mathbb{R}; +, \cdot, E)$ is o-minimal \Rightarrow TAME.

Question
How about the intermediate steps?
Recall

1. \((\mathbb{R}; +, \cdot, E)\) defines \(\mathbb{Z} \Rightarrow \text{WILD.}\)
2. \((\mathbb{R}; +, \cdot, E)\) is o-minimal \(\Rightarrow \text{TAME.}\)

Question

How about the intermediate steps?
Let $2^\mathbb{Z} = \{2^n : n \in \mathbb{Z}\}$.

- $(\mathbb{R}; +, \cdot, 2^\mathbb{Z})$ is not o-minimal but does not define \mathbb{Z}.
 Every unary definable set is a union of open intervals and finitely many discrete sets. \(\Rightarrow\) **d-minimal**.

- There is a Cantor-like set C such that $(\mathbb{R}; +, \cdot, C)$ is not d-minimal and does not define \mathbb{Z}.
 Every unary definable set either has nonempty interior or is nowhere dense.
Let $2^\mathbb{Z} = \{2^n : n \in \mathbb{Z}\}$.

- $(\mathbb{R}; +, \cdot, 2^\mathbb{Z})$ is not o-minimal but does not define \mathbb{Z}. Every unary definable set is a union of open intervals and finitely many discrete sets. ⇒ d-minimal.

- There is a Cantor-like set C such that $(\mathbb{R}; +, \cdot, C)$ is not d-minimal and does not define \mathbb{Z}. Every unary definable set either has nonempty interior or is nowhere dense.
Let $2^\mathbb{Z} = \{2^n : n \in \mathbb{Z}\}$.

- $(\mathbb{R}; +, \cdot, 2^\mathbb{Z})$ is not o-minimal but does not define \mathbb{Z}. Every unary definable set is a union of open intervals and finitely many discrete sets. \Rightarrow d-minimal.

- There is a Cantor-like set C such that $(\mathbb{R}; +, \cdot, C)$ is not d-minimal and does not define \mathbb{Z}. Every unary definable set either has nonempty interior or is nowhere dense.
Let $2^\mathbb{Z} = \{2^n : n \in \mathbb{Z}\}$.

- $(\mathbb{R}; +, \cdot, 2^\mathbb{Z})$ is not o-minimal but does not define \mathbb{Z}. Every unary definable set is a union of open intervals and finitely many discrete sets. \Rightarrow **d-minimal**.

- There is a Cantor-like set C such that $(\mathbb{R}; +, \cdot, C)$ is not d-minimal and does not define \mathbb{Z}.

 Every unary definable set either has nonempty interior or is nowhere dense.
Let $2\mathbb{Z} = \{2^n : n \in \mathbb{Z}\}$.

- $(\mathbb{R}; +, \cdot, 2\mathbb{Z})$ is not o-minimal but does not define \mathbb{Z}. Every unary definable set is a union of open intervals and finitely many discrete sets. \Rightarrow **d-minimal**.

- There is a Cantor-like set C such that $(\mathbb{R}; +, \cdot, C)$ is not d-minimal and does not define \mathbb{Z}. Every unary definable set either has nonempty interior or is nowhere dense.
Scope of the research program

- The tameness hierarchy.
- Classification of sets in the hierarchy.
- Properties of each class in the hierarchy.
The tameness hierarchy.
Classification of sets in the hierarchy.
Properties of each class in the hierarchy.
Scope of the research program

- The tameness hierarchy.
- Classification of sets in the hierarchy.
- Properties of each class in the hierarchy.
Let $\Pi(n, d)$ be the collection of the coordinates projections from \mathbb{R}^n to \mathbb{R}^d. Let $E \subseteq \mathbb{R}^n$.

$\dim E$ is the least d such that there is $\pi \in \Pi(n, d)$ such that πE has nonempty interior.
For $r > 0$, let $N_r(E)$ be the least number of open balls of radius at most r that covers E. The **assouad dimension of** E is the infimum of the set of $\alpha \geq 0$ such that

$$\{(r/R)^\alpha N_r(B_r(x) \cap E) : x \in E, 0 < r < R < +\infty\}$$

is bounded.
Let $E \subseteq \mathbb{R}^n$. Then $(\mathbb{R}; +, \cdot, E)$ does not define \mathbb{Z} if and only if all “metric dimension” coincides on closed definable sets.

(Hieronymi and Miller, 2016)
Let $E \subseteq \mathbb{R}^n$ be a d-dimensional C^1 submanifold that is definable in $(\mathbb{R}; +, \cdot, 2\mathbb{Z})$. Then

$$E \text{ has finite } d\text{-dimensional Hausdorff measure if and only if } \dim \text{ fr } E < \dim E.$$
Let $E \subseteq \mathbb{R}^n$ be a d-dimensional C^1 submanifold that is definable in $(\mathbb{R}; +, \cdot, 2^{\mathbb{Z}})$. Then

E has finite d-dimensional Hausdorff measure if and only if $\dim \text{fr } E < \dim E$.

Measure Theoretic Tameness = “does not define compact d-dimension C^1 submanifold with infinite d-dimensional Hausdorff measure.”

Measure Theoretic Tameness provides a different tameness hierarchy.
(Tychonievich, 2013)

Let $E \subseteq \mathbb{R}^n$ be a d-dimensional C^1 submanifold that is definable in $(\mathbb{R}; +, \cdot, 2^\mathbb{Z})$. Then

$$E \text{ has finite } d\text{-dimensional Hausdorff measure if and only if } \dim \text{fr } E < \dim E.$$

Measure Theoretic Tameness = “does not define compact d-dimension C^1 submanifold with infinite d-dimensional Hausdorff measure.”

(T, 2017)

Measure Theoretic Tameness provides a different tameness hierarchy.
More constructive results.
Let $f: \mathbb{R}^n \to \mathbb{R}$.

$$Z(f) := \{ x \in \mathbb{R}^n : f(x) = 0 \}$$

If f is continuous, then $Z(f)$ is closed.

If $E \subseteq \mathbb{R}^n$ is closed, then the distance function to E is a continuous function whose zero set is E.
Let $f : \mathbb{R}^n \to \mathbb{R}$.

$$Z(f) := \{x \in \mathbb{R}^n : f(x) = 0\}$$

If f is continuous, then $Z(f)$ is closed.

If $E \subseteq \mathbb{R}^n$ is closed, then the distance function to E is a continuous function whose zero set is E.
Let $f : \mathbb{R}^n \to \mathbb{R}$.

$$Z(f) := \{ x \in \mathbb{R}^n : f(x) = 0 \}$$

If f is continuous, then $Z(f)$ is closed.

If $E \subseteq \mathbb{R}^n$ is closed, then the distance function to E is a continuous function whose zero set is E.
Throughout, assume $E \subseteq \mathbb{R}^n$ is closed and $p \in \mathbb{N}$.

Question

Is there a C^p function f such that $Z(f) = E$?

Yes.

Attributed to H. Whitney

There is a C^p function $f : \mathbb{R}^n \to \mathbb{R}$ such that $Z(f) = E$.
Throughout, assume $E \subseteq \mathbb{R}^n$ is closed and $p \in \mathbb{N}$.

Question

Is there a C^p function f such that $Z(f) = E$?

Yes.

Attributed to H. Whitney

There is a C^p function $f : \mathbb{R}^n \to \mathbb{R}$ such that $Z(f) = E$.
C^p zero set problem

$E = \{0\}$

Athipat Thamrongthanyalak

Tameness in the real field
C^p zero set problem

$E = \{0\}$
C^p zero set problem

Questions

- If E is well behaved in some prescribed sense, can f be chosen to be equally well behaved?
- Is there a C^p function definable in $(\mathbb{R}, +, \cdot, E)$ whose zero set is E?
Questions

- If E is well behaved in some prescribed sense, can f be chosen to be equally well behaved?
- Is there a C^p function definable in $(\mathbb{R}, +, \cdot, E)$ whose zero set is E?
1. If $(\mathbb{R}, +, \cdot, E)$ defines \mathbb{N}, then YES.
(Whitney)

2. If $(\mathbb{R}, +, \cdot, E)$ is o-minimal, then YES.
(van den Dries & Miller)

3. If $(\mathbb{R}, +, \cdot, E)$ defines no infinite discrete sets, then question reduces to o-minimal case.
(Miller & Speissegger, Tychonievich, Hieronymi)

4. If $(\mathbb{R}; +, \cdot, E)$ is d-minimal, then YES.
(Miller & T.)
If \((\mathbb{R}, +, \cdot, E)\) defines \(\mathbb{N}\), then YES. (Whitney)

If \((\mathbb{R}, +, \cdot, E)\) is o-minimal, then YES. (van den Dries & Miller)

If \((\mathbb{R}, +, \cdot, E)\) defines no infinite discrete sets, then question reduces to o-minimal case. (Miller & Speissegger, Tychonievich, Hieronymi)

If \((\mathbb{R}; +, \cdot, E)\) is d-minimal, then YES. (Miller & T.)
1. If $(\mathbb{R}, +, \cdot, E)$ defines \mathbb{N}, then YES. (Whitney)

2. If $(\mathbb{R}, +, \cdot, E)$ is o-minimal, then YES. (van den Dries & Miller)

3. If $(\mathbb{R}, +, \cdot, E)$ defines no infinite discrete sets, then question reduces to o-minimal case. (Miller & Speissegger, Tychonievich, Hieronymi)

4. If $(\mathbb{R}; +, \cdot, E)$ is d-minimal, then YES. (Miller & T.)
1. If $(\mathbb{R}, +, \cdot, E)$ defines \mathbb{N}, then YES. (Whitney)
2. If $(\mathbb{R}, +, \cdot, E)$ is o-minimal, then YES. (van den Dries & Miller)
3. If $(\mathbb{R}, +, \cdot, E)$ defines no infinite discrete sets, then question reduces to o-minimal case. (Miller & Speisseegeger, Tychonieichvich, Hieronymi)
4. If $(\mathbb{R}; +, \cdot, E)$ is d-minimal, then YES. (Miller & T.)
Let $E \subseteq \mathbb{R}^n$ be closed and $T : E \Rightarrow \mathbb{R}^m$ be a set-valued map from X to \mathbb{R}^m. Let $f : E \to \mathbb{R}^m$.

We say that f is a **selection of** T if $f(x) \in T(x)$ for every $x \in E$.

(Michael’s selection theorem)

If T is lower semi-continuous, then there is a continuous function f which is a selection of T.

Athipat Thamrongthanyalak

Tameness in the real field
Let $E \subseteq \mathbb{R}^n$ be closed and $T: E \rightrightarrows \mathbb{R}^m$ be a set-valued map from X to \mathbb{R}^m. Let $f: E \rightarrow \mathbb{R}^m$.

We say that f is a selection of T if $f(x) \in T(x)$ for every $x \in E$.

(Micheal’s selection theorem)

If T is lower semi-continuous, then there is a continuous function f which is a selection of T.
Selection problem

Questions

- If T is well behaved in some prescribed sense, can f be chosen to be equally well behaved?
- Is there a continuous selection of T which is definable in $(\mathbb{R}, +, \cdot, T)$?
Questions

- If T is well behaved in some prescribed sense, can f be chosen to be equally well behaved?
- Is there a continuous selection of T which is definable in $(\mathbb{R}, +, \cdot, T)$?
Selection problem

1. If $\langle \mathbb{R}, +, \cdot, T \rangle$ defines \mathbb{N}, then YES. (Whitney)
2. If $\langle \mathbb{R}, +, \cdot, T \rangle$ is o-minimal, then YES. (van den Dries & Miller)
3. If $\langle \mathbb{R}, +, \cdot, T \rangle$ defines no infinite discrete sets, then question reduces to o-minimal case. (Miller & Speissegger, Tychonievich, Hieronymi)
4. If $\langle \mathbb{R}; +, \cdot, T \rangle$ is d-minimal, then YES. (Miller & T.)
1. If \((\mathbb{R}, +, \cdot, T)\) defines \(\mathbb{N}\), then YES.
(Whitney)

2. If \((\mathbb{R}, +, \cdot, T)\) is o-minimal, then YES.
(van den Dries & Miller)

3. If \((\mathbb{R}, +, \cdot, T)\) defines no infinite discrete sets, then question reduces to o-minimal case.
(Miller & Speissegger, Tychonievich, Hieronymi)

4. If \((\mathbb{R}; +, \cdot, T)\) is d-minimal, then YES.
(Miller & T.)
1 If $(\mathbb{R}, +, \cdot, T)$ defines \mathbb{N}, then YES. (Whitney)

2 If $(\mathbb{R}, +, \cdot, T)$ is o-minimal, then YES. (van den Dries & Miller)

3 If $(\mathbb{R}, +, \cdot, T)$ defines no infinite discrete sets, then question reduces to o-minimal case. (Miller & Speissegger, Tychonievich, Hieronymi)

4 If $(\mathbb{R}; +, \cdot, T)$ is d-minimal, then YES. (Miller & T.)
1. If \((\mathbb{R}, +, \cdot, T)\) defines \(\mathbb{N}\), then YES. (Whitney)

2. If \((\mathbb{R}, +, \cdot, T)\) is o-minimal, then YES. (van den Dries & Miller)

3. If \((\mathbb{R}, +, \cdot, T)\) defines no infinite discrete sets, then question reduces to o-minimal case. (Miller & Speissegger, Tychonievich, Hieronymi)

4. If \((\mathbb{R}; +, \cdot, T)\) is d-minimal, then YES. (Miller & T.)
Thank you.