Principal of Mathematical Induction.

Let $P(n)$ denote a (mathematical) statemant that involves occurences of a positive integer n.
Assume that (i) $P\left(n_{0}\right)$ is true, where $n_{0} \in \mathbb{N}$
(ii) $P(k)$ is true, where $k \in \mathbb{N} \Rightarrow P(k+1)$ is true.

Then $P(n)$ is true for all positive integer $n \geq n_{0}$.

Principal of Mathematical Induction (Strong Form.)

Let $P(n)$ denote a mathematical statemant involving a positive integer n. Assume that
(i) $P\left(n_{0}\right)$ is true where $n_{0} \in \mathbb{N}$, and
(ii) $\forall i \leq k, P(i)$ is true $\Rightarrow P(k+1)$ is true.

Then $P(n)$ is true for all positive integer $n \geq n_{0}$.

The Well - Ordering Principle.

Every nonempty set of nonnegative integers has a least element.

Division Algorithm.

For any $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{+}$, there exist unique $q, r \in \mathbb{Z}$ with

$$
a=b q+r \quad \text { and } \quad 0 \leq r<b
$$

The Pigeonhole Principle.

If m pigeons occupy n pigeonholes and $m>n$, then there is at least one hole with at least $\left\lceil\frac{m}{n}\right\rceil$ pigeons.

Archimedean Property.

For each real number x, there exists a positive integer n such that $x<n$.
For each positive real number x, there exists a positive integer n such that $\frac{1}{n}<x$.

The Density Theorem.

Between teo distinct rael numbers, there always exists a rational number.

Relations

Definition. Let A and B be the sets. The cartesian product of A and B, denoted by $A \times B$ is defined to be the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$. In symbols,

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

Note that two ordered pairs (a, b) and (c, d) are equal if and only if $a=c$ and $b=d$.

A binary relation from A to B is a subset of $A \times B$. If R is a relation from A to B and $(a, b) \in R$, we will denote by $a R b$. The domain of R (denoted by $\operatorname{Dom}(R))$ and the range of R (denoted by Range (R)) are defined as follow:

$$
\operatorname{Dom}(R)=\{a \mid(a, b) \in R\}, \quad \text { Range }(R)=\{b \mid(a, b) \in R\}
$$

The range of R is sometimes called the image of R and denoted by $\operatorname{Im}(R)$.
Definition. Let R be a relation on set A (i.e. $R \subseteq A \times A$). Then we say
R is reflexive if $\forall a \in A, a R a$.
R is symmetric if $\forall a, b \in A, a R b \rightarrow b R a$.
R is transitive if $\forall a, b, c \in A,(a R b \wedge b R c) \rightarrow a R c$.
R is irreflexive if $\forall a \in A, \sim(a R a)$.
R is antisymmetric if $\forall a, b \in A$ and $a \neq b, a R b \rightarrow \sim(b R a)$.
(equivalently, $\forall a, b \in A, a r b \wedge b r a \rightarrow a=b$)
R is an equivalence relation if R is reflexive, symmetric and transitive.
R is a partial order if R is reflexive, antisymmetric and transitive.
R is complete if $\forall a, b \in A, a \neq b \rightarrow(a R b \vee b R a)$.
R is a total order (or linear order) if R is a partial order which is complete.
Definition. Let R be a relation from A to B. R inverse, denoted by R^{-1}, is the relation from B to A given by

$$
R^{-1}=\{(x, y) \mid(y, x) \in R\} .
$$

Definition. Let R be a relation from A to B and S a relation from B to C. Then R composed with S (denoted $S \circ R$) is the relation from A to C given by

$$
S \circ R=\{(x, z) \in A \times C \mid \exists y \in B,(x, y) \in R \text { and }(y, z) \in S\} .
$$

Theorem 1. Let A, B, C be sets, R a relation from A to B and S a relation from B to C. Then

$$
(S \circ R)^{-1}=R^{-1} \circ S^{-1}
$$

Theorem 2. Let A, B, C, D be sets with R, S and T relations from A to B, B to C and C to D, respectively. Then

$$
T \circ(S \circ R)=(T \circ S) \circ R .
$$

Theorem 3. Let R be a relation on A. Then R is transitive if and only if $R \circ R \subseteq R$.

Equivalence relations

Definition. Let A be a nonempty set. A partition Π of A is a collection of nonempty subsets of A such that every element of A is an element of exactly one of these sets.

Equivalently, $\Pi=\left\{A_{\alpha} \mid \emptyset \neq A_{\alpha} \subseteq A\right.$ and $\left.\alpha \in \Omega\right\}$ is a partition of A iff
(i) $\bigcup_{\alpha \in \Omega} A_{\alpha}=A$, and
(ii) $A_{\alpha} \cap A_{\beta}=\emptyset$ or $A_{\alpha}=A_{\beta}$ for all $\alpha, \beta \in \Omega$.

Definition. Let R be an equivalence relation on a nonempty set A. Let $a \in A$. The equivalence class of a modulo R, denoted by $[a]_{R}$ or $[a]$ (if there is no abiguity) is defined by

$$
[a]_{R}=\{x \in A \mid x R a\} .
$$

Note that $a \in[a]_{R}$ for all $a \in A$. The set of all such equivalence classes is denoted by ${ }^{A} / R$ and called A modulo R. i.e.

$$
A / R=\left\{[a]_{R} \mid a \in A\right\} .
$$

Theorem 4. Let E be an equivalence relation on a set $A \neq \emptyset$. Then
(i) $[a] \cap[b] \neq \emptyset \Leftrightarrow a E b$
(ii) $[a] \cap[b] \neq \emptyset \Leftrightarrow[a]=[b]$
(iii) A / E is a partition of A
(iv) $\rho_{A / E}=E$.

Theorem 5. Let Π be a partition of a set $A \neq \emptyset$. Define $\rho_{\text {п }}$ on A by

$$
x \rho_{\Pi} y \Leftrightarrow \exists C \in \Pi, x \in C \text { and } y \in C .
$$

Then (i) $\rho_{\text {пI }}$ is an equivalence relation on A
(ii) $A / \rho_{\Pi}=\Pi$.

In this case, Π is called the equivalence relations determined by the partition Π.

Partial Orders

Definition. A nonempty set P together with a partial ordering \preccurlyeq on P is called a partially ordered set or poset. For a poset (P, \preccurlyeq), a relation \prec is defined on P by

$$
a \prec b \quad \text { iff } \quad a \preccurlyeq b \text { and } a \neq b
$$

a is then said to be less than b or b is greater than a.
Definition. Let (P, \preccurlyeq) be a poset and $\emptyset \neq S \subseteq P$. Define

$$
\preccurlyeq_{S}=\{(a, b) \in S \times S \mid a \preccurlyeq b\} .
$$

Then \preccurlyeq_{S} is a partial ordering on S and $(S, \preccurlyeq S)$ is called a subposet of (P, \preccurlyeq). We usually write S is a subposet of (P, \preccurlyeq) and denoted $\preccurlyeq S$ by \preccurlyeq.

Definition. Let (A, \preccurlyeq) be a poset. The lexicographic order is defined on the set of words in A as follows:
For $a=a_{1} a_{2} \ldots a_{m}$ and $b=b_{1} b_{2} \ldots b_{n}, a \preccurlyeq b$ if
(i) a and b are identical, or
(ii) there is $1_{0} \leq \min \{m, n\}$ such that $a_{i}=b_{i}$ for all $i \leq i_{0}$ and $a_{i_{0}} \preccurlyeq b_{i_{0}}$
(iii) $m<n$ and $a_{i}=b_{i}$ for all $i=1,2, \ldots, m$.

Note that a word in A is means a string of elements in A.
Definition. Let S be a subposet of a poset (P, \preccurlyeq).
$m \in S$ is said to be a maximal element of S if no element in S is greater than m. (equiv. $\forall s \in S, m \preccurlyeq s \Rightarrow m=s$)
$n \in S$ is said to be a minimal element of S if no element in S is less than n. (equiv. $\forall s \in S, s \preccurlyeq n \Rightarrow s=n$)
$u \in P$ is said to be an upper bound of S if $s \preccurlyeq u$ for all $s \in S$.
$\ell \in P$ is said to be a lower bound of S if $\ell \preccurlyeq s$ for all $s \in S$.
An upper bound u_{0} of S is a least upper bound or supremum of S if no element less than u_{0} is an upper bound of S. u_{0} is denoted by $\sup S$. If $\sup S \in S$, then it is called a maximum of S.

A lower bound ℓ_{0} of S is a greatest lower bound or infimum of S if no element greater than ℓ_{0} is a lower bound of S. ℓ_{0} is denoted by $\inf S$. If $\inf S \in S$, then it is called a minimum of S.

Definition. A poset in which every two elements have a infimum and a suppremum is called a lattice.

Theorem 6. Let S be a subposet of a poset (P, \preccurlyeq). Then S has at most one supremum (infimum).

Definition. A poset P is said to be a well-ordered set if every subset of P contains a smallest element.

Definition. A subposet of a poset (P, \preccurlyeq) is a chain if (S, \preccurlyeq) is a total order.

Functions

Definition. A relation f from A to B is called a function if for $\left(x_{1}, y_{1}\right) \in f$ and $\left(x_{2}, y_{2}\right) \in f, x_{1}=x_{2}$ implies $y_{1}=y_{2}$.

Notation. 1) $f: A \rightarrow B, f$ is a function from A to B means f is a function whose domain is A and Range $f \subseteq B$.
2) If $f: A \rightarrow B$, for each $x \in A$, we write $y=f(x)$ and say that y is the value of f at x.

Definition. Let $f: A \rightarrow B$. Then we say that f is one-to-one (or f is an injection) if $\forall x_{1}, x_{2} \in B, f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.
f is onto (or surjection) if Range $f=B$ (i.e. for each $y \in B \exists x \in A, f(x)=$ y).
f is a one-to-one correspondence (or bijection) if f is both one-to-one and onto.

Theorem 7. Let $f: X \rightarrow Y$. Then
(i) f is an injection iff f^{-1} is a function
(ii) f is a bijection implies $f^{-1}: Y \rightarrow X$.

Theorem 8. If f and g are functions, then $g \circ f$ is a function whose domain is the set $\left\{x \in \operatorname{Dom} f \mid f(x) \in D_{g}\right\}$.

Theorem 9. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$
(i) If f and g are injective, the $g \circ f$ is injective.
(ii) If f and g are surjective, then $g \circ f$ is surjective
(iii) If f and g are bijective, then $g \circ f$ is bijective.

Theorem 10. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$
(i) If $g \circ f$ is injective, the f is injective.
(ii) If $g \circ f$ is surjective, then g is surjective
(iii) If $g \circ f$ is bijective, then f is injective and g is surjective.

Definition. A function f is said to be invertible if f^{-1} is a function.
Theorem 11. Let $f: A \rightarrow B$ and $Y=$ Range f. Then f is invertible if and only if $\exists g: Y \rightarrow A$ such that $g \circ f=\imath_{A}$ and $f \circ g=\imath_{Y}$.

Definition. A binary operation on a nonempty set S is a mapping *: $S \times S \rightarrow S .(S, *)$ is called an algebraic system. A binary operation * : $S \times S \rightarrow S$ is said to be
associative if $x *(y * z)=(x * y) * z$ for all $x, y, z \in S$
commutative if $x * y=y * x$ for all $x, y \in S$.

Definition. Let $(S, *)$ be an algebric system. $e \in S$ is called a neutral element or identity element if

$$
e * x=x=x * e \quad \text { for all } x \in S
$$

Definition. Let $(S, *)$ be an algebric system with the neutral element e. $b \in S$ is said to be an inverse of $a \in S$ if $a * b=e=b * a$.

Image and inverse image of a set

Definition. Let $f: A \rightarrow B, C \subseteq A$ and $D \subseteq B$. We define

$$
\begin{aligned}
& f[C]=\{b \in B \mid \exists a \in C, f(a)=b\} \\
& f^{-1}[D]=\{a \in A \mid f(a) \in D\}
\end{aligned}
$$

$f[C]$ is called the image of C (under f) and $f^{-1}[D]$ is called the inverse image (preimage) of D.

Theorem 12. $f: A \rightarrow B$ and $A_{1}, A_{2} \subseteq A$. Then
(i) $A_{1} \subseteq A_{2} \Rightarrow f\left[A_{1}\right] \subseteq f\left[A_{2}\right]$.
(ii) $f\left[A_{1} \cup A_{2}\right]=f\left[A_{1}\right] \cup f\left[A_{2}\right]$.
(iii) $f\left[A_{1} \cap A_{2}\right] \subseteq f\left[A_{1}\right] \cap f\left[A_{2}\right]$. The equality holds if
(iv) $f\left[A_{1}\right] \backslash f\left[A_{2}\right] \subseteq f\left[A_{1} \backslash A_{2}\right]$.

Theorem 13. $f: A \rightarrow B$ and $B_{1}, B_{2} \subseteq B$. Then
(i) $B_{1} \subseteq B_{2} \Rightarrow f^{-1}\left[B_{1}\right] \subseteq f^{-1}\left[B_{2}\right]$.
(ii) $f^{-1}\left[B_{1} \cup B_{2}\right]=f^{-1}\left[B_{1}\right] \cup f^{-1}\left[B_{2}\right]$.
(iii) $f^{-1}\left[B_{1} \cap B_{2}\right]=f^{-1}\left[B_{1}\right] \cap f^{-1}\left[B_{2}\right]$.
(iv) $f^{-1}\left[B_{1} \backslash B_{2}\right] \subseteq f^{-1}\left[B_{1}\right] \backslash f^{-1}\left[B_{2}\right]$.

Theorem 14. $f: A \rightarrow B$ and $X \subseteq A, Y \subseteq B$. Then
(i) $X \subseteq f^{-1}[f[X]]$. The equality holds if
(ii) $f\left[f^{-1}[Y]\right] \subseteq Y$. The equality holds if

Theorem 15. $f: A \rightarrow B$ and $g: B \rightarrow C$
(i) $g \circ f[X] \subseteq g[f[X]]$.
(ii) $(g \circ f)^{-1}[Y] \subseteq f^{-1}\left[g^{-1}[Y]\right]$.

Finite sets

Definition. A set A is said to be finite if $A=\emptyset$ or there is a bijection between A and $\{1,2, \ldots, n\}$ for some $n \in \mathbb{N}$. We shall show later that n is unique. We say that, in the fromer case, A has n elements and n is called
the cardinal of A. In the later case, we say that A has 0 element and 0 is the cardinal of A. For a finite set A, the cardinal (number) of A is denoted $\operatorname{card}(A)$. If A is a finite set with cardinal $n \geq 1$, we may write $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Lemma 16. Let A be a set and $n \in \mathbb{N}$. Let $a_{0} \in A$. Then there exists a bijection of the set A with the set $\{1,2, \ldots, n+1\}$ if and only if there exists a bijection of the set $A \backslash\left\{a_{0}\right\}$ with $\{1,2, \ldots, n\}$.

Theorem 17. If there is a bijection between A and $\{1,2, \ldots, n\}$, where $n \geq 1$, then for any proper subset B of A, there is no bijection between B and $\{1,2, \ldots, n\}$, but (provided $B \neq \emptyset$) there exists a bijection between B and $\{1,2, \ldots, m\}$ for some $m<n$.

Corollary. (i) If A is finite, then there is no bijection between A and any proper subset of A.
(ii) Let A and B be sets with $B \subseteq A$. If A is finite, then B is finite.
(iii) The number of elements in a finite set A is uniquely determined by A.
(iv) \mathbb{N} is not finite. (so \mathbb{Z} is not finite)

Theorem 18. Let A be a nonempty set and $n \in \mathbb{N}$. Then TFAE
(i) There is a surjection from $\{1,2, \ldots, n\}$ to A.
(ii) There is an injection from A to $\{1,2, \ldots, n\}$.
(iii) A is finite and has at most n elements.

Theorem 19. If A and B are finite sets, then so are $A \cup B$ and $A \times B$. Moreover,

$$
\begin{aligned}
& \operatorname{card}(A \cup B)=\operatorname{card}(A)+\operatorname{card}(B)-\operatorname{card}(A \cap B) \\
& \operatorname{card}(A \times B)=\operatorname{card}(A) \cdot \operatorname{card}(B)
\end{aligned}
$$

Theorem 20. (i) A finite union of finite sets is finite.
(ii) A finite product of finite sets is finite.

Infinite sets

Definition. A set A is said to be infinite if A is not finite.
Definition. Let A be a set. A is said to be denumerable or countably infinite if there is a bijection between A and \mathbb{N}. A is said to be countable if A is finnite or denumerable. A is said to be uncountable if A is not countable.

Theorem 21. An infinite set contains a countably infinite subset.
Theorem 22. Any subset of \mathbb{N} is countable.
Theorem 23. A set A is infinite iff there exists a bijection between A and a proper subset of A.

Theorem 24. Any subset of a countable set is countable.
Theorem 25. $\mathbb{N} \times \mathbb{N}$ is countably infinite.
Theorem 26. Let A be a nonempty set. Then TFAE
(i) There is a surjection from \mathbb{N} to A.
(ii) There is an injection from A to \mathbb{N}.
(iii) A is countable.

Theorem 27.
(i) A countable union of countable sets is countable.
(ii) A finite product of countable sets is countable.

Theorem 28. \mathbb{Q} is countably infinite.
Theorem 29. $(0,1)$ is uncountable.
Corollary. (i) \mathbb{R} is uncountable.
(ii) \mathbb{Q}^{c} is uncountable.

Similarity and Dominance

Definition. Let A and B be sets. We say that A is similar to B and write $A \approx B$ if there is a bijection from A to B.

Definition. Let A and B be sets. We say that B dominates A and write $B \succcurlyeq A$ or $A \preccurlyeq B$ if there is an injection from A to B. We say that B strongly dominates A and write $B \succ A$ or $A \prec B$ if $B \succcurlyeq A$ and $A \not \approx B$.

Theorem 30. For any set $A, A \prec \wp(A)$.
Theorem 31. For any set $A, \wp(A) \approx 2^{A}$ where 2^{A} is the set of functions from A to a set of two elements $(\{0,1\})$.

Theorem 32. (Schröder-Berstein) Let A and B be sets. If $A \preccurlyeq B$ and $B \succcurlyeq A$, then $A \approx B$.

Theorem 33. (i) $(0,1) \approx 2^{\mathbb{N}}$.
(ii) $(0,1) \times(0,1) \approx(0,1)$.

Corollary. $\mathbb{N} \prec \mathbb{R}$.
Theorem 34. If $A \approx C$ and $B \approx D$, then $A^{B} \approx C^{D}$.

Cardinal Numbers

Definition. $\operatorname{card}(\emptyset)=0$,
If $A \approx\{1,2, \ldots, n\}$, then $\operatorname{card}(A)=n$, $\operatorname{card}(\mathbb{N})=\aleph_{0}($ aleph null $), \operatorname{card}(\mathbb{R})=\aleph_{1}$, $\operatorname{card}(A)=\operatorname{card}(B)$ iff $A \approx B$, $\operatorname{card}(A) \leq \operatorname{card}(B)$ iff $A \preccurlyeq B$, $\operatorname{card}(A)<\operatorname{card}(B)$ iff $A \prec B$.

Definition. Let u and v be cardinal numbers. Let A and B be disjoint sets such that $\operatorname{card}(A)=u$ and $\operatorname{card}(B)=v$. Then $u+v=\operatorname{card}(A \cup B)$.

Definition. Let u and v be cardinal numbers. Let A and B be sets such that $\operatorname{card}(A)=u$ and $\operatorname{card}(B)=v$. Then

$$
\begin{aligned}
u \times v & =\operatorname{card}(A \times B), \text { and } \\
u^{v} & =\operatorname{card}\left(A^{B}\right)
\end{aligned}
$$

Theorem 35. For any cardinal numbers u and v, the followings hold
(i) $u+v=v+u, u v=v u$.
(ii) $u+(v+w)=(u+v)+w, u(v w)=(u v) w$.
(iii) $u(v+w)=u v+u w$.
(iv) $u^{v} u^{w}=u^{v+w}$.
(v) $(u v)^{w}=u^{w} v^{w}$.
(vi) $\left(u^{v}\right)^{w}=u^{v w}$.

Theorem 36. For any cardinal numbers u, v and w,
(i) if $u \leq v$, then $u+w \leq v+w$,
(ii) if $u \leq v$, then $u w \leq v w$.

