
Principal of Mathematical Induction.
Let P (n) denote a (mathematical) statemant that involves occurences of
a positive integer n.
Assume that (i) P (n0) is true, where n0 ∈ N

(ii) P (k) is true, where k ∈ N ⇒ P (k + 1) is true.
Then P (n) is true for all positive integer n ≥ n0.

Principal of Mathematical Induction (Strong Form.)
Let P (n) denote a mathematical statemant involving a positive integer n.
Assume that

(i) P (n0) is true where n0 ∈ N, and

(ii) ∀i ≤ k, P (i) is true ⇒ P (k + 1) is true.

Then P (n) is true for all positive integer n ≥ n0.

The Well - Ordering Principle.
Every nonempty set of nonnegative integers has a least element.

Division Algorithm.
For any a ∈ Z and b ∈ Z+, there exist unique q, r ∈ Z with

a = bq + r and 0 ≤ r < b

.

The Pigeonhole Principle.
If m pigeons occupy n pigeonholes and m > n, then there is at least one hole
with at least dm

n
e pigeons.

Archimedean Property.
For each real number x, there exists a positive integer n such that x < n.
For each positive real number x, there exists a positive integer n such that
1
n

< x.

The Density Theorem.
Between teo distinct rael numbers, there always exists a rational number.
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Relations

Definition. Let A and B be the sets. The cartesian product of A and
B, denoted by A× B is defined to be the set of all ordered pairs (a, b) with
a ∈ A and b ∈ B. In symbols,

A×B = {(a, b) | a ∈ A and b ∈ B}.

Note that two ordered pairs (a, b) and (c, d) are equal if and only if a = c
and b = d.

A binary relation from A to B is a subset of A×B. If R is a relation from
A to B and (a, b) ∈ R, we will denote by aRb. The domain of R (denoted by
Dom(R)) and the range of R (denoted by Range(R)) are defined as follow:

Dom(R) = {a | (a, b) ∈ R}, Range(R) = {b | (a, b) ∈ R}.

The range of R is sometimes called the image of R and denoted by Im(R).

Definition. Let R be a relation on set A (i.e. R ⊆ A× A). Then we say

R is reflexive if ∀a ∈ A, aRa.

R is symmetric if ∀a, b ∈ A, aRb → bRa.

R is transitive if ∀a, b, c ∈ A, (aRb ∧ bRc) → aRc.

R is irreflexive if ∀a ∈ A,∼ (aRa).

R is antisymmetric if ∀a, b ∈ A and a 6= b, aRb →∼ (bRa).

(equivalently, ∀a, b ∈ A, arb ∧ bra → a = b)

R is an equivalence relation if R is reflexive, symmetric and transitive.

R is a partial order if R is reflexive, antisymmetric and transitive.

R is complete if ∀a, b ∈ A, a 6= b → (aRb ∨ bRa).

R is a total order (or linear order) if R is a partial order which is complete.

Definition. Let R be a relation from A to B. R inverse, denoted by R−1,
is the relation from B to A given by

R−1 = {(x, y) | (y, x) ∈ R}.

Definition. Let R be a relation from A to B and S a relation from B to
C. Then R composed with S (denoted S ◦R) is the relation from A to C
given by

S ◦R = {(x, z) ∈ A× C | ∃y ∈ B, (x, y) ∈ R and (y, z) ∈ S}.

Theorem 1. Let A, B, C be sets, R a relation from A to B and S a relation
from B to C. Then

(S ◦R)−1 = R−1 ◦ S−1
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Theorem 2. Let A, B, C,D be sets with R,S and T relations from A to B,
B to C and C to D, respectively. Then

T ◦ (S ◦R) = (T ◦ S) ◦R.

Theorem 3. Let R be a relation on A. Then R is transitive if and only if
R ◦R ⊆ R.

Equivalence relations

Definition. Let A be a nonempty set. A partition Π of A is a collection of
nonempty subsets of A such that every element of A is an element of exactly
one of these sets.

Equivalently, Π = {Aα| ∅ 6= Aα ⊆ A and α ∈ Ω} is a partition of A iff

(i)
⋃
α∈Ω

Aα = A, and

(ii) Aα ∩ Aβ = ∅ or Aα = Aβ for all α, β ∈ Ω.

Definition. Let R be an equivalence relation on a nonempty set A. Let
a ∈ A. The equivalence class of a modulo R, denoted by [a]R or [a] (if
there is no abiguity) is defined by

[a]R = {x ∈ A | xRa}.

Note that a ∈ [a]R for all a ∈ A. The set of all such equivalence classes is
denoted by A

/
R and called A modulo R. i.e.

A/R = {[a]R | a ∈ A}.

Theorem 4. Let E be an equivalence relation on a set A 6= ∅. Then
(i) [a] ∩ [b] 6= ∅ ⇔ aEb

(ii) [a] ∩ [b] 6= ∅ ⇔ [a] = [b]

(iii)
A/E is a partition of A

(iv) ρ
A
/
E

= E.

Theorem 5. Let Π be a partition of a set A 6= ∅. Define ρ
Π

on A by

xρ
Π
y ⇔ ∃C ∈ Π, x ∈ C and y ∈ C.

Then (i) ρ
Π

is an equivalence relation on A

(ii)
A/ρΠ

= Π.

In this case, Π is called the equivalence relations determined by the
partition Π.
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Partial Orders

Definition. A nonempty set P together with a partial ordering 4 on P is
called a partially ordered set or poset. For a poset (P, 4), a relation ≺ is
defined on P by

a ≺ b iff a 4 b and a 6= b

a is then said to be less than b or b is greater than a.

Definition. Let (P, 4) be a poset and ∅ 6= S ⊆ P . Define

4S= {(a, b) ∈ S × S | a 4 b}.

Then 4S is a partial ordering on S and (S, 4S) is called a subposet of
(P, 4). We usually write S is a subposet of (P, 4) and denoted 4S by 4.

Definition. Let (A, 4) be a poset. The lexicographic order is defined on
the set of words in A as follows :
For a = a1a2 . . . am and b = b1b2 . . . bn, a 4 b if

(i) a and b are identical, or
(ii) there is ı0 ≤ min{m, n} such that ai = bi for all i ≤ i0 and ai0 4 bi0

(iii) m < n and ai = bi for all i = 1, 2, . . . ,m.
Note that a word in A is means a string of elements in A.

Definition. Let S be a subposet of a poset (P, 4).
m ∈ S is said to be a maximal element of S if no element in S is greater

than m. (equiv. ∀s ∈ S, m 4 s ⇒ m = s)
n ∈ S is said to be a minimal element of S if no element in S is less

than n. (equiv. ∀s ∈ S, s 4 n ⇒ s = n)
u ∈ P is said to be an upper bound of S if s 4 u for all s ∈ S.
` ∈ P is said to be a lower bound of S if ` 4 s for all s ∈ S.
An upper bound u0 of S is a least upper bound or supremum of S if

no element less than u0 is an upper bound of S. u0 is denoted by sup S. If
sup S ∈ S, then it is called a maximum of S.

A lower bound `0 of S is a greatest lower bound or infimum of S if
no element greater than `0 is a lower bound of S. `0 is denoted by inf S. If
inf S ∈ S, then it is called a minimum of S.

Definition. A poset in which every two elements have a infimum and a
suppremum is called a lattice.

Theorem 6. Let S be a subposet of a poset (P, 4). Then S has at most
one supremum (infimum).

Definition. A poset P is said to be a well-ordered set if every subset of
P contains a smallest element.
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Definition. A subposet of a poset (P, 4) is a chain if (S, 4) is a total order.
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Functions

Definition. A relation f from A to B is called a function if for (x1, y1) ∈ f
and (x2, y2) ∈ f, x1 = x2 implies y1 = y2.

Notation. 1) f : A → B, f is a function from A to B means f is a function
whose domain is A and Rangef ⊆ B.

2) If f : A → B, for each x ∈ A, we write y = f(x) and say that
y is the value of f at x.

Definition. Let f : A → B. Then we say that
f is one-to-one (or f is an injection) if ∀x1, x2 ∈ B, f(x1) = f(x2) implies
x1 = x2.
f is onto (or surjection) if Rangef = B (i.e. for each y ∈ B∃x ∈ A, f(x) =
y).
f is a one-to-one correspondence (or bijection) if f is both one-to-one
and onto.

Theorem 7. Let f : X → Y . Then
(i) f is an injection iff f−1 is a function
(ii) f is a bijection implies f−1 : Y → X.

Theorem 8. If f and g are functions, then g ◦f is a function whose domain
is the set {x ∈ Domf | f(x) ∈ Dg}.

Theorem 9. Let f : X → Y and g : Y → Z
(i) If f and g are injective, the g ◦ f is injective.
(ii) If f and g are surjective, then g ◦ f is surjective
(iii) If f and g are bijective, then g ◦ f is bijective.

Theorem 10. Let f : X → Y and g : Y → Z
(i) If g ◦ f is injective, the f is injective.
(ii) If g ◦ f is surjective, then g is surjective
(iii) If g ◦ f is bijective, then f is injective and g is surjective.

Definition. A function f is said to be invertible if f−1 is a function.

Theorem 11. Let f : A → B and Y = Rangef . Then f is invertible if and
only if ∃g : Y → A such that g ◦ f = ıA and f ◦ g = ıY .

Definition. A binary operation on a nonempty set S is a mapping ∗ :
S × S → S. (S, ∗) is called an algebraic system. A binary operation
∗ : S × S → S is said to be

associative if x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ S
commutative if x ∗ y = y ∗ x for all x, y ∈ S.
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Definition. Let (S, ∗) be an algebric system. e ∈ S is called a neutral
element or identity element if

e ∗ x = x = x ∗ e for all x ∈ S.

Definition. Let (S, ∗) be an algebric system with the neutral element e.
b ∈ S is said to be an inverse of a ∈ S if a ∗ b = e = b ∗ a.

Image and inverse image of a set

Definition. Let f : A → B, C ⊆ A and D ⊆ B. We define

f [C] = {b ∈ B | ∃a ∈ C, f(a) = b}
f−1[D] = {a ∈ A | f(a) ∈ D}.

f [C] is called the image of C (under f) and f−1[D] is called the inverse
image (preimage) of D.

Theorem 12. f : A → B and A1, A2 ⊆ A. Then
(i) A1 ⊆ A2 ⇒ f [A1] ⊆ f [A2].
(ii) f [A1 ∪ A2] = f [A1] ∪ f [A2].
(iii) f [A1 ∩ A2] ⊆ f [A1] ∩ f [A2]. The equality holds if
(iv) f [A1] \ f [A2] ⊆ f [A1 \ A2].

Theorem 13. f : A → B and B1, B2 ⊆ B. Then
(i) B1 ⊆ B2 ⇒ f−1[B1] ⊆ f−1[B2].
(ii) f−1[B1 ∪B2] = f−1[B1] ∪ f−1[B2].
(iii) f−1[B1 ∩B2] = f−1[B1] ∩ f−1[B2].
(iv) f−1[B1 \B2] ⊆ f−1[B1] \ f−1[B2].

Theorem 14. f : A → B and X ⊆ A, Y ⊆ B. Then
(i) X ⊆ f−1[f [X]]. The equality holds if
(ii) f [f−1[Y ]] ⊆ Y . The equality holds if

Theorem 15. f : A → B and g : B → C
(i) g ◦ f [X] ⊆ g[f [X]].
(ii) (g ◦ f)−1[Y ] ⊆ f−1[g−1[Y ]].

Finite sets

Definition. A set A is said to be finite if A = ∅ or there is a bijection
between A and {1, 2, . . . , n} for some n ∈ N. We shall show later that n is
unique. We say that, in the fromer case, A has n elements and n is called
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the cardinal of A. In the later case, we say that A has 0 element and
0 is the cardinal of A. For a finite set A, the cardinal (number) of A is
denoted card(A). If A is a finite set with cardinal n ≥ 1, we may write
A = {a1, a2, . . . , an}.

Lemma 16. Let A be a set and n ∈ N. Let a0 ∈ A. Then there exists a
bijection of the set A with the set {1, 2, . . . , n + 1} if and only if there exists
a bijection of the set A \ {a0} with {1, 2, . . . , n}.

Theorem 17. If there is a bijection between A and {1, 2, . . . , n}, where
n ≥ 1, then for any proper subset B of A, there is no bijection between B
and {1, 2, . . . , n}, but (provided B 6= ∅) there exists a bijection between B
and {1, 2, . . . ,m} for some m < n.

Corollary. (i) If A is finite, then there is no bijection between A and
any proper subset of A.

(ii) Let A and B be sets with B ⊆ A. If A is finite, then B is finite.
(iii) The number of elements in a finite set A is uniquely determined by

A.
(iv) N is not finite. (so Z is not finite)

Theorem 18. Let A be a nonempty set and n ∈ N. Then TFAE
(i) There is a surjection from {1, 2, . . . , n} to A.
(ii) There is an injection from A to {1, 2, . . . , n}.
(iii) A is finite and has at most n elements.

Theorem 19. If A and B are finite sets, then so are A ∪ B and A × B.
Moreover,

card(A ∪B) = card(A) + card(B)− card(A ∩B),

card(A×B) = card(A) · card(B).

Theorem 20. (i) A finite union of finite sets is finite.
(ii) A finite product of finite sets is finite.

Infinite sets

Definition. A set A is said to be infinite if A is not finite.

Definition. Let A be a set. A is said to be denumerable or countably
infinite if there is a bijection between A and N. A is said to be countable
if A is finnite or denumerable. A is said to be uncountable if A is not
countable.
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Theorem 21. An infinite set contains a countably infinite subset.

Theorem 22. Any subset of N is countable.

Theorem 23. A set A is infinite iff there exists a bijection between A and
a proper subset of A.

Theorem 24. Any subset of a countable set is countable.

Theorem 25. N× N is countably infinite.

Theorem 26. Let A be a nonempty set. Then TFAE
(i) There is a surjection from N to A.
(ii) There is an injection from A to N.
(iii) A is countable.

Theorem 27.
(i) A countable union of countable sets is countable.
(ii) A finite product of countable sets is countable.

Theorem 28. Q is countably infinite.

Theorem 29. (0, 1) is uncountable.

Corollary. (i) R is uncountable.
(ii) Qc is uncountable.

Similarity and Dominance

Definition. Let A and B be sets. We say that A is similar to B and write
A ≈ B if there is a bijection from A to B.

Definition. Let A and B be sets. We say that B dominates A and write
B < A or A 4 B if there is an injection from A to B. We say that B
strongly dominates A and write B � A or A ≺ B if B < A and A 6≈ B.

Theorem 30. For any set A, A ≺ ℘(A).

Theorem 31. For any set A, ℘(A) ≈ 2A where 2A is the set of functions
from A to a set of two elements ({0, 1}).

Theorem 32. (Schröder-Berstein) Let A and B be sets. If A 4 B and
B < A, then A ≈ B.

Theorem 33. (i) (0, 1) ≈ 2N.
(ii) (0, 1)× (0, 1) ≈ (0, 1).
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Corollary. N ≺ R.

Theorem 34. If A ≈ C and B ≈ D, then AB ≈ CD.

Cardinal Numbers

Definition. card(∅) = 0,
If A ≈ {1, 2, . . . , n}, then card(A) = n,
card(N) = ℵ0 (aleph null), card(R) = ℵ1,
card(A) = card(B) iff A ≈ B,
card(A) ≤ card(B) iff A 4 B,
card(A) < card(B) iff A ≺ B.

Definition. Let u and v be cardinal numbers. Let A and B be disjoint sets
such that card(A) = u and card(B) = v. Then u + v = card(A ∪B).

Definition. Let u and v be cardinal numbers. Let A and B be sets such
that card(A) = u and card(B) = v. Then

u× v = card(A×B), and

uv = card(AB).

Theorem 35. For any cardinal numbers u and v, the followings hold
(i) u + v = v + u, uv = vu.
(ii) u + (v + w) = (u + v) + w, u(vw) = (uv)w.
(iii) u(v + w) = uv + uw.
(iv) uvuw = uv+w.
(v) (uv)w = uwvw.
(vi) (uv)w = uvw.

Theorem 36. For any cardinal numbers u, v and w,
(i) if u ≤ v, then u + w ≤ v + w,
(ii) if u ≤ v, then uw ≤ vw.
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