Principal of Mathematical Induction.
Let P(n) denote a (mathematical) statemant that involves occurences of
a positive integer n.
Assume that (i) P(ng) is true, where ng € N
(ii) P(k) is true, where k € N = P(k + 1) is true.
Then P(n) is true for all positive integer n > ny.

Principal of Mathematical Induction (Strong Form.)
Let P(n) denote a mathematical statemant involving a positive integer n.
Assume that

(i) P(ng) is true where ny € N, and
(i) Vi <k, P(i) is true = P(k + 1) is true.

Then P(n) is true for all positive integer n > ny.

The Well - Ordering Principle.
Every nonempty set of nonnegative integers has a least element.

Division Algorithm.
For any a € Z and b € Z™*, there exist unique ¢,r € Z with

a=bg+r and 0<r<b

The Pigeonhole Principle.
If m pigeons occupy n pigeonholes and m > n, then there is at least one hole
with at least [%] pigeons.

Archimedean Property.

For each real number x, there exists a positive integer n such that = < n.
For each positive real number z, there exists a positive integer n such that
1

= < .

n

The Density Theorem.
Between teo distinct rael numbers, there always exists a rational number.



Relations

Definition. Let A and B be the sets. The cartesian product of A and
B, denoted by A x B is defined to be the set of all ordered pairs (a,b) with
a € Aand b € B. In symbols,

Ax B={(a,b) |a€ Aandbe B}.

Note that two ordered pairs (a,b) and (¢, d) are equal if and only if a = ¢
and b =d.

A binary relation from A to B is a subset of A x B. If R is a relation from
Ato B and (a,b) € R, we will denote by aRb. The domain of R (denoted by
Dom(R)) and the range of R (denoted by Range(R)) are defined as follow:

Dom(R) = {a | (a,b) € R}, Range(R) = {b | (a,b) € R}.
The range of R is sometimes called the image of R and denoted by Im(R).

Definition. Let R be a relation on set A (i.e. R C A x A). Then we say
R is reflexive if Va € A, aRa.

R is symmetric if Va,b € A, aRb — bRa.

R is transitive if Va,b,c € A, (aRb N bRc) — aRe.

R is irreflexive if Va € A, ~ (aRa).

R is antisymmetric if Va,b € A and a # b,aRb —~ (bRa).
(equivalently, Va,b € A, arb A bra — a = b)

R is an equivalence relation if R is reflexive, symmetric and transitive.

R is a partial order if R is reflexive, antisymmetric and transitive.

R is complete if Va,b € A,a # b — (aRbV bRa).

R is a total order (or linear order) if R is a partial order which is complete.

Definition. Let R be a relation from A to B. R inverse, denoted by R},
is the relation from B to A given by

R~ ={(z,y) | (y.2) € R}.

Definition. Let R be a relation from A to B and S a relation from B to
C. Then R composed with S (denoted S o R) is the relation from A to C'
given by

SoR={(z,2) e AxC |3y e B,(z,y) € Rand (y,z2) € S}.

Theorem 1. Let A, B, C be sets, R a relation from A to B and S a relation
from B to C'. Then
(SoR) '=R1'oSs!



Theorem 2. Let A, B,C, D be sets with R, S and T relations from A to B,
B to C' and C to D, respectively. Then

To(SoR)=(ToS)oR.

Theorem 3. Let R be a relation on A. Then R is transitive if and only if
RoRCR.

Equivalence relations

Definition. Let A be a nonempty set. A partition II of A is a collection of
nonempty subsets of A such that every element of A is an element of exactly
one of these sets.

Equivalently, IT = {A,| 0 # A, C A and « € Q} is a partition of A iff

(i) U A, = A, and

ae)

(ii) Ay NAg=0or A, = Ag for all a, 5 € Q.

Definition. Let R be an equivalence relation on a nonempty set A. Let
a € A. The equivalence class of a modulo R, denoted by [a]gr or [a] (if
there is no abiguity) is defined by

lalg = {z € A | xRa}.

Note that a € [a]g for all @ € A. The set of all such equivalence classes is
denoted by A/ r and called A modulo R. i.e.

“r={lalr | a € A}.

Theorem 4. Let E be an equivalence relation on a set A # (). Then
(i) [a]N[b] #0 < aFEDb

(ii) [a] N[b] # 0 < [a] = [b]

(iii) /g is a partition of A
)

Theorem 5. Let II be a partition of a set A # (). Define p, on A by
zpy e 3IC ell,Lr e Candy e C.
Then (i) p, is an equivalence relation on A
A
(ii) / pr= I1.
In this case, II is called the equivalence relations determined by the
partition II.



Partial Orders

Definition. A nonempty set P together with a partial ordering < on P is
called a partially ordered set or poset. For a poset (P, <), a relation < is
defined on P by

a<b iff axbanda#b

a is then said to be less than b or b is greater than a.

Definition. Let (P, <) be a poset and () # S C P. Define
<s={(a,b) € S x S | a < b}.

Then <g is a partial ordering on S and (5,<s) is called a subposet of
(P, <). We usually write S is a subposet of (P, <) and denoted xg by <.

Definition. Let (A, <) be a poset. The lexicographic order is defined on
the set of words in A as follows :
For a = ajay...a,, and b =0b1by...b,, a < bif
(i) a and b are identical, or
(ii) there is 19 < min{m,n} such that a; = b; for all i <1y and a;, < b;,
(ili) m <nand a; = b; for all i =1,2,... ,m.
Note that a word in A is means a string of elements in A.

Definition. Let S be a subposet of a poset (P, ).

m € S is said to be a maximal element of S if no element in S is greater
than m. (equiv. Vs € S,m < s = m =s)

n € S is said to be a minimal element of S if no element in S is less
than n. (equiv. Vs € S,s xn = s=n)

u € P is said to be an upper bound of S if s < u for all s € S.

¢ € P is said to be a lower bound of S if / < s for all s € S.

An upper bound ug of S is a least upper bound or supremum of S if
no element less than ug is an upper bound of S. wug is denoted by sup S. If
sup S € 9, then it is called a maximum of S.

A lower bound ¢, of S is a greatest lower bound or infimum of S if
no element greater than ¢, is a lower bound of S. /¢ is denoted by inf S. If
inf S € S, then it is called a minimum of S.

Definition. A poset in which every two elements have a infimum and a

suppremum is called a lattice.

Theorem 6. Let S be a subposet of a poset (P,<). Then S has at most
one supremum (infimum).

Definition. A poset P is said to be a well-ordered set if every subset of
P contains a smallest element.



Definition. A subposet of a poset (P, <) is a chain if (5, x) is a total order.



Functions

Definition. A relation f from A to B is called a function if for (z1,y;) € f
and (z2,y9) € f,x1 = x implies y; = yo.

Notation. 1) f : A — B, f is a function from A to B means f is a function
whose domain is A and Rangef C B.

2) If f: A— B, for each x € A, we write y = f(z) and say that
y is the value of f at x.

Definition. Let f: A — B. Then we say that

f is one-to-one (or f is an injection) if Va1, 29 € B, f(x1) = f(z2) implies
T1 = To.

f is onto (or surjection) if Rangef = B (i.e. for each y € B3x € A, f(x) =
y)-

f is a one-to-one correspondence (or bijection) if f is both one-to-one
and onto.

Theorem 7. Let f: X — Y. Then
(i) f is an injection iff f~1 is a function
(i) f is a bijection implies f~!: Y — X.

Theorem 8. If f and g are functions, then go f is a function whose domain
is the set {x € Domf | f(z) € D,}.

Theorem 9. Let f: X =Y andg:Y — Z
(i) If f and g are injective, the g o f is injective.
(ii) If f and g are surjective, then g o f is surjective
(iii) If f and g are bijective, then g o f is bijective.

Theorem 10. et f: X =Y andg:Y — 7
(i) If g o f is injective, the f is injective.
(ii) If g o f is surjective, then g is surjective
(iii) If g o f is bijective, then f is injective and g is surjective.

Definition. A function f is said to be invertible if f~! is a function.

Theorem 11. Let f: A — B and Y = Rangef. Then f is invertible if and
only if 3¢9 : Y — A such that go f =14 and fog =1y.

Definition. A binary operation on a nonempty set S is a mapping * :
S xS — S.(9,%) is called an algebraic system. A binary operation
x5 x S — S is said to be

associative if x x (y x z) = (x x y) x z for all z,y,2z € S

commutative if z xy =y x for all x,y € S.



Definition. Let (S,*) be an algebric system. e € S is called a neutral
element or identity element if

exrx=x=xx*xe forallzeSsS.

Definition. Let (S, %) be an algebric system with the neutral element e.
b € S is said to be an inverse of a € Sif axb=e=bx*a.

Image and inverse image of a set

Definition. Let f: A — B,C C A and D C B. We define
flC]={be B|3a €, f(a) =0}
f7'[D={a€ Al f(a) € D}.

fIC] is called the image of C' (under f) and f~![D] is called the inverse
image (preimage) of D.

Theorem 12. f: A — B and A;, Ay C A. Then
(i) Ay € Ay = f[AL] € fA].
(i) f[A1 U Ao] = flA1] U f[As].
(iii) f]A1 N Ay] C fl[A1] N f[A2]. The equality holds if
(iv) FIAL] N\ flAo] € fAL\ Ag].

Theorem 13. f: A — B and By, B, C B. Then
(i) Bl C By= f7'[By] C f7![Ba].
(ii) f7HB1U Bo] = fHBi] U fH[By).
(iil) f7H[B1 N Bo] = f7H[Bi] N f7[Bo].
(iv) B\ Bo] C fHBi]\ f7[Ba).

Theorem 14. f: A— Band X C AY C B. Then
(i) X C f7'[f[X]]. The equality holds if
(ii) fIf7'[Y]] €Y. The equality holds if

Theorem 15. f:A— Bandg: B —C

(1) go fIX] C g[fIX]].
()(QOf)l[]Cf[ Y

Finite sets

Definition. A set A is said to be finite if A = () or there is a bijection
between A and {1,2,...,n} for some n € N. We shall show later that n is
unique. We say that, in the fromer case, A has n elements and n is called
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the cardinal of A. In the later case, we say that A has 0 element and
0 is the cardinal of A. For a finite set A, the cardinal (number) of A is
denoted card(A). If A is a finite set with cardinal n > 1, we may write
A={ay,aq9,...,a,}.

Lemma 16. Let A be a set and n € N. Let ag € A. Then there exists a
bijection of the set A with the set {1,2,...,n+ 1} if and only if there exists
a bijection of the set A\ {ao} with {1,2,...,n}.

Theorem 17. If there is a bijection between A and {1,2,...,n}, where
n > 1, then for any proper subset B of A, there is no bijection between B
and {1,2,...,n}, but (provided B # (}) there exists a bijection between B
and {1,2,...,m} for some m < n.

Corollary. (i) If A is finite, then there is no bijection between A and
any proper subset of A.

(ii) Let A and B be sets with B C A. If A is finite, then B is finite.

(iii) The number of elements in a finite set A is uniquely determined by
A.

(iv) N is not finite. (so Z is not finite)

Theorem 18. Let A be a nonempty set and n € N. Then TFAE
(i) There is a surjection from {1,2,...,n} to A.
(ii) There is an injection from A to {1,2,...,n}.
(iii) A is finite and has at most n elements.

Theorem 19. If A and B are finite sets, then so are AU B and A x B.
Moreover,

card(AU B) = card(A) + card(B) — card(AN B),
card(A x B) = card(A) - card(B).

Theorem 20. (i) A finite union of finite sets is finite.
(ii) A finite product of finite sets is finite.

Infinite sets
Definition. A set A is said to be infinite if A is not finite.

Definition. Let A be a set. A is said to be denumerable or countably
infinite if there is a bijection between A and N. A is said to be countable
if A is finnite or denumerable. A is said to be uncountable if A is not
countable.



Theorem 21. An infinite set contains a countably infinite subset.
Theorem 22. Any subset of N is countable.

Theorem 23. A set A is infinite iff there exists a bijection between A and
a proper subset of A.

Theorem 24. Any subset of a countable set is countable.
Theorem 25. N x N is countably infinite.

Theorem 26. Let A be a nonempty set. Then TFAE
(i) There is a surjection from N to A.
(ii) There is an injection from A to N.
(iii) A is countable.

Theorem 27.
(i) A countable union of countable sets is countable.
(ii) A finite product of countable sets is countable.

Theorem 28. Q is countably infinite.
Theorem 29. (0,1) is uncountable.

Corollary. (i) R is uncountable.
(ii) Q° is uncountable.

Similarity and Dominance

Definition. Let A and B be sets. We say that A is similar to B and write
A = B if there is a bijection from A to B.

Definition. Let A and B be sets. We say that B dominates A and write
B = A or A X B if there is an injection from A to B. We say that B
strongly dominates A and write B>~ Aor A < Bif B> A and A % B.

Theorem 30. For any set A, A < p(A).

Theorem 31. For any set A, p(A) ~ 24 where 24 is the set of functions
from A to a set of two elements ({0,1}).

Theorem 32. (Schréder-Berstein) Let A and B be sets. If A < B and
B = A, then A ~ B.

Theorem 33. (i) (0,1) ~ 2"
(i) (0,1) x (0,1) =~ (0,1).



Corollary. N < R.
Theorem 34. If A~ C and B ~ D, then A ~ CP,

Cardinal Numbers

Definition. card()) = 0,
If A~ {1,2,...,n}, then card(A) = n,

card(N) = R (aleph null), card(R) = ¥,
card(A) = card(B) iff A~ B

card(A) < card(B) iff A =

card(A) < card(B) iff A < B

Definition. Let v and v be cardinal numbers. Let A and B be disjoint sets
such that card(A) = u and card(B) = v. Then u + v = card(AU B).

Definition. Let u and v be cardinal numbers. Let A and B be sets such
that card(A) = w and card(B) = v. Then

uxv= card(A x B), and
u’ = card(AP).
Theorem 35. For any cardinal numbers v and v, the followings hold

(i) u+v=v+uuv=ou.
ii) u+(v+w) = (u+v)+w, ulvw) = (uv)w.

Uuw _ uv+w
v) (uw)? = u*o®
Vl) (uv)w _ uvw

Theorem 36. For any cardinal numbers u, v and w,
(i) if u < w, then u+w < v+ w,
(i) if u < v, then vw < vw.
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