Yotsanan Meemark
  
ยศนันต์ มีมาก
  Department of Mathematics and Computer Science,
 
Faculty of Science, Chulalongkorn University,
  Pathumwan, Bangkok 10330 Thailand

  yzm101@yahoo.com  +66-2-218-5155

 
Academic Employments:

2015–present Chulalongkorn University (Professor---Royal Appointment Pending*)
2012–2015 Chulalongkorn University (Associate Professor)
2009–2012 Chulalongkorn University (Assistant Professor)
2006–2009 Chulalongkorn University (Lecturer)

Research Interests:
Algebraic Number Theory; Combinatorial Number Theory; Algebraic Graph Theory; Commutative Ring Theory.

Office Hours: MO 9--10, TU 9--10, 
TH 10--11, 13--14
Course Supplements:

Math Model Reason 2/59 
Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 
Supplements: Book 1 | Book 2 | Book 3 | Book 4

UG Linear Algebra 

Linear Algebra I
(in Thai) | Linear Algebra II 
Supplement: Practice Exam

UnderGrad Abst Algebra I  
Syllabus | Lectures 17 | Lectures 89 | Lectures 1011
Lectures 1213 | IntroCoding | LinearCodes
GRAD Abstract Algebra 
Book: Abstract Algebra 2nd edn   Supplement: Number Theory

Grad Abst Algebra I  
Chapter 1 | Chapter 2

Grad Abst Algebra II 2/59  
Chapter 3 | Chapter 4 | Chapter 5

Calculus (in Thai)
Calculus I | Calculus II
 

Publications:

  1. Meemark Y. and Vipismakul W., A recursive formula for group determinant coefficients, J. Algebra Appl. 2017 to appear.
  2. Tocharoenirattisai I. and Meemark Y., Exponent of local ring extensions of Galois rings and digraphs of the kth power mapping, Turk. J. Math. 2016 to appear.
  3. Meemark Y. and Sriwongsa S., Orthogonal graphs over finite commutative rings of odd characteristic, Finite Fields Appl. 2016; 40: 26–45.
  4. Suntornpoch B. and Meemark Y., Cayley graphs over a finite chain ring and gcd-graphs, Bull. Aust. Math. Soc. 2016; 93: 353363.
  5. Meemark Y. and Prinyasart T., A combinatorial proof of decomposition property of reduced residue systems, Involve, a Journal of Mathematics, 2016; 9-3: 361366.
  6. Meemark Y. and Sriwongsa S., Perfect state transfer in unitary Cayley graphs over local rings, Trans. Comb. 2014; 3 no. 4: 43–54.
  7. Meemark Y. and Puirod T., Symplectic graphs over finite commutative rings, Europ. J. Combinatorics 2014; 41: 298–307.
  8. Meemark Y. and Suntornpoch B., Balanced unitary Cayley sigraphs over finite commutative rings, J. Algebra Appl. 2014; 13 No.5 1350152 (12 pages).
  9. Meemark Y. and Suntornpoch B., Eigenvalues and energy of restricted unitary Cayley graphs induced from the square mapping, ScienceAsia 2013; 39 No.6: 649652.
  10. Meemark Y. and Puirod T., Symplectic graphs over finite local rings, Europ. J. Combinatorics 2013; 34: 1114–1124.
  11. Leela-apiradee W. and Meemark Y., Isomorphism testing for graph C_G(a,b), Notes on Number Theory and Discrete Math. 2012; 18 No.3: 20–34.
  12. Meemark Y. and Wiroonsri N., The digraph of the kth power mapping of the quotient ring of polynomials over finite fields, Finite Fields Appl. 2012; 18: 179–191.
  13. Meemark Y. and Wongpradit A., Permutation polynomials and elliptic curves, Notes on Number Theory and Discrete Math. 2011; 17 No.4: 1–8.
  14. Kiani D., Aghaei M.M.H., Meemark Y. and Suntornpoch B., Energy of unitary Cayley graphs and gcd-graphs, Linear Algebra Appl. 2011; 435: 1336–1343.
  15. Meemark Y. and Prinyasart T., On symplectic graphs modulo p^n, Discrete Math. 2011; 311: 1874–1878.
  16. Meemark Y. and Maingam N., The digraph of the square mapping on quotient rings over the Gaussian integers, Int. J. Number Theory 2011; 7: 835–852.
  17. Meemark Y. and Leela-apiradee W., A change of basis matrix and integrals of power of cosine, J. Statist. Plann. Inference 2011; 141: 1319–1324.
  18. Meemark Y. and Sangvisut E., Near media and their representations, Int. J. Pure Appl. Math. 2010; 64: 21–30.
  19. Meemark Y. and Wiroonsri N., The quadratic digraph on polynomial rings over finite fields, Finite Fields Appl. 2010; 16: 334–346.
  20. Meemark Y. and Chinwarakorn S., Lerch's theorem over function fields, Integers 2010; 10: 25–30.
  21. Meemark Y. and Pinthubthaworn C., Nathanson's height and the CSS conjecture for Cayley graphs, J. Math. Research 2009; 1: 3–7.
  22. Meemark Y. and Thitipak T., An equivalence relation on a set of words of finite length, Europ. J. Combinatorics 2009; 30: 788–797.
  23. Li W.-C. W. and Meemark Y., Hecke operators on Drinfeld cusp forms, J. Number Theory 2008; 128: 1941–1965.
  24. Li W.-C. W. and Meemark Y., Ramanujan graphs on cosets of PGL_2(F_q), Finite Fields Appl. 2005; 11: 511–543.